Absolute and ratio measurements of the polarizability of Na, K, and Rb with an atom interferometer

W. F. Holmgren, M. C. Revelle, V. P. A. Lonij, A. D. Cronin Department of Physics University of Arizona 1118 E. 4th St., Tucson, AZ, 85721

e-mail: holmgren@physics.arizona.edu

Abstract

We present absolute and ratio measurements of the ground state electric dipole polarizability of sodium, potassium, and rubidium using a Mach-Zehnder atom interferometer with an electric field gradient (Fig. 1). The uncertainty of each absolute measurement is less than 1.0% and the uncertainty of each ratio measurement is 0.3%. Our measurements (Table 1) serve as improved tests of atomic structure calculations. Please see arXiv:1001.3888 and www.atomwave.org

Keywords: polarizability, atom interferometry, sodium, potassium, rubidium

References

 C.R. Ekstrom, J. Schmiedmayer, M.S. Chapman, T.D. Hammond, and D.E. Pritchard, Phys. Rev. A 51, 3883 (1995).

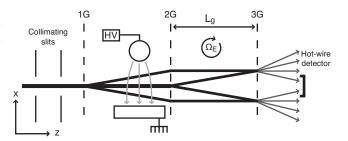


Figure 1: Nanogratings 1G, 2G, and 3G form multiple Mach-Zehnder interferometers (two are shown). An atom passing through the interaction region acquires a phase ϕ_1 , ϕ_0 , and ϕ_{-1} along each path. The third grating acts as a mask for the 100 nm period interference fringes. The distance between two gratings is $L_g=940$ mm. The vertical (transverse) scale is exaggerated 10^4 times. The Earth rotation rate Ω_E modifies the measured phase shift.

Table 1: Measured absolute and recommended atomic polarizabilities in units of $10^{-24} \, \mathrm{cm}^3$. Recommended polarizability measurements are based on our ratio measurements and the sodium polarizability measurement from reference [1].

	$\alpha_{\rm abs}({\rm stat.})({\rm sys.})$	$\alpha_{\rm rec}({\rm tot.})$
Na	24.11(2)(18)	24.11(8)
\mathbf{K}	43.06(14)(33)	43.06(21)
Rb	47.24(12)(42)	47.24(21)